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Abstract

An analysis of linear stability of the stationary laminar Darcy flow in a horizontal porous layer is performed. The porous layer is saturated with
cold water. The upper plane boundary is assumed to be subject to heat transfer with finite conductance to an environment at the temperature of
maximum density of cold water. The lower plane boundary is adiabatic. Convective instabilities are caused by flow viscous dissipation, inducing
a basic temperature distribution that decreases in the upward direction. For prescribed values of the Biot number Bi and the Gebhart number Ge,
the critical values of the product R = Ge Pe4, where Pe is the Péclet number associated to the basic flow solution, are determined. Disturbances
in the form of oblique rolls are analyzed. It is shown that: transverse rolls are preferred at the onset of convection; critical values of R are almost
independent of Ge for realistic values of this parameter; critical values of R depend on Bi and lie in an interval 36 < R < 85.6144.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Thermally-driven convection in fluid-saturated porous me-
dia is of considerable interest and has been widely studied in
the last few decades. There are important applications related
both to geophysical research and to engineering problems.

A major topic of porous media research has been the prob-
lem of convection onset in horizontal layers heated from below.
Detailed discussions of the literature on this subject can be
found in the recent book of Nield and Bejan [1] and in the re-
view paper by Rees [2].

In most of the studies dealing with onset of convection in
horizontal layers the instability is driven by an unstable temper-
ature gradient that is imposed externally. However, in a recent
paper Barletta et al. [3] analyse the effect of viscous heating on
stability. They assumed that there is no imposed temperature
gradient across the layer, but rather that heat is generated inter-
nally by action of viscous dissipation. In particular the upper
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surface is taken to be isothermal (infinite Biot number), while
the lower surface is thermally insulated. The former boundary
condition is relaxed later in the paper by using a finite-Biot-
number condition to represent external heat transfer to the am-
bient temperature.

The role played by the effect of viscous dissipation in the
onset of thermally-driven instabilities of fluid flows in porous
media has been disregarded in most of the literature. In fact, this
effect may be very small if the temperature differences in the
fluid induced by the boundary conditions are sufficiently high.
This comparison between the internal heating effect of viscous
dissipation and the externally prescribed temperature difference
is made through a dimensionless number, i.e. the Brinkman
number. Obviously, viscous dissipation plays a central role in
those cases where no externally prescribed temperature dif-
ference exists in the fluid system, thus leading to an infinite
Brinkman number. This condition is precisely that considered
in the analysis of Barletta et al. [3]. This study is concerned
with fluid having a linear relationship between density and tem-
perature, which is standard for ordinary fluids at temperatures
not too low. Convection in cold water, however, behaves in a
different manner when the temperature domain encompasses
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Nomenclature

a nondimensional wave number, Eq. (29)
An nth series coefficient, Eq. (36)
Bn nth series coefficient, Eq. (36)
Bi Biot number, hL/k

cp specific heat at constant pressure . . . . . J kg−1 K−1

cwave nondimensional phase velocity, Eq. (35)
g modulus of gravitational acceleration . . . . . . m s−2

G nondimensional parameter, Ge(cosχ)4

Ge modified Gebhart number, Eq. (14)
h external heat transfer coefficient . . . . . W m−2 K−1

K permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

k thermal conductivity . . . . . . . . . . . . . . . W m−1 K−1

L height of the layer . . . . . . . . . . . . . . . . . . . . . . . . . . . m
n integer number
P nondimensional parameter, Eq. (33)
Pe Péclet number, Eq. (17)
R nondimensional parameter, Eq. (33)
Re real part
s unit vector parallel to the base flow direction
t nondimensional time, Eq. (8)
T nondimensional temperature, Eq. (8)
Tm temperature of maximum density of cold

water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K or ◦C
u,v,w nondimensional velocity components, Eq. (8)
U,V,W nondimensional velocity disturbances, Eq. (18)

ū basic flow velocity . . . . . . . . . . . . . . . . . . . . . . . m s−1

x, y, z nondimensional coordinates, Eq. (8)

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . m2 s−1

β∗ thermodynamic coefficient, Eq. (1) . . . . . . . . . K−2

β thermal expansion coefficient . . . . . . . . . . . . . . K−1

γ reduced exponential coefficient, Eq. (30)
θ nondimensional temperature disturbance, Eq. (18)
Θ(y) nondimensional function, Eq. (29)
λ exponential coefficient, Eq. (29)
λ1, λ2 real and imaginary parts of λ

υ kinematic viscosity . . . . . . . . . . . . . . . . . . . . . m2 s−1

ρ mass density . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

ρm maximum mass density of cold water . . . . kg m−3

σ heat capacity ratio
χ angle between the base flow direction and the x-axis
ψ nondimensional streamfunction, Eq. (25)
Ψ (y) nondimensional function, Eq. (29)

Superscript, subscripts

− dimensional quantity
B basic flow
cr critical value
4 ◦C at which the density of water reaches a maximum value.
In the present paper we use a quadratic density-temperature re-
lationship. The aim is to investigate the instability of mixed
convection of cold water in a porous layer induced by viscous
dissipation.

There are several studies dealing with onset of thermal con-
vection in horizontal porous layers and cavities saturated with
cold water. Sun et al. [4] seem to be the first to study onset of
convection of cold water using linear stability analysis. Since
this work, cold water convection has received some attention.
Representative papers include Blake et al. [5], Poulikakos [6],
Yen [7], Mamou et al. [8] and Mahidjiba et al. [9,10]. However,
none of these studies include viscous heating.

2. Governing equations

Let us consider laminar buoyant flow in a horizontal porous
layer saturated with cold water. The layer is bounded above and
below by two infinite and impermeable planes, separated by
a distance L. The components of seepage velocity along the
x̄-, ȳ-, and z̄-directions are denoted by ū, v̄ and w̄, respec-
tively, where the ȳ-axis is vertical. The lower boundary wall
ȳ = 0 is assumed to be adiabatic, while the upper boundary
wall ȳ = L is subject to a 3rd kind thermal boundary condition
representing heat transfer versus an external environment with
temperature Tm, that corresponds to the maximum density of
cold water.
Darcy law is assumed to be valid and the fluid density ρ̄

varies with temperature T̄ according to a quadratic relationship
of the form

ρ̄ = ρm

[
1 − β∗(T̄ − Tm)2] (1)

where ρm is the maximum density, Tm = 3.98 ◦C the corre-
sponding temperature and the coefficient β∗ = 8 × 10−6 K−2.
According to Moore and Weiss [11] the above relation was
found to hold within 4% over the range 0–8 ◦C. The Oberbeck-
Boussinesq approximation is applied considering Tm as the ref-
erence temperature in order to define the buoyancy contribution.
Obviously, here we do not have as usual a linear equation of
state, but a parabolic equation of state as shown in Eq. (1).

The governing mass, momentum and energy equations can
be expressed as

∂ū

∂x̄
+ ∂v̄

∂ȳ
+ ∂w̄

∂z̄
= 0 (2)

∂v̄

∂x̄
− ∂ū

∂ȳ
= 2gβ∗K

υ
(T̄ − Tm)

∂T̄

∂x̄
(3)

∂v̄

∂z̄
− ∂w̄

∂ȳ
= 2gβ∗K

υ
(T̄ − Tm)

∂T̄

∂z̄
(4)

∂ū

∂z̄
− ∂w̄

∂x̄
= 0 (5)

σ
∂T̄

∂t̄
+ ū

∂T̄

∂x̄
+ v̄

∂T̄

∂ȳ
+ w̄

∂T̄

∂z̄

= α

(
∂2T̄

2
+ ∂2T̄

2
+ ∂2T̄

2

)
+ υ (

ū2 + v̄2 + w̄2) (6)

∂x̄ ∂ȳ ∂z̄ Kcp
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Eqs. (3)–(5) have been obtained by applying the curl operator to
both sides of Darcy law in order to encompass the dependence
on the pressure field.

The velocity and temperature conditions at the lower and up-
per boundaries are

ȳ = 0: v̄ = 0,
∂T̄

∂ȳ
= 0

ȳ = L: v̄ = 0, k
∂T̄

∂ȳ
+ h(T̄ − Tm) = 0 (7)

where k is thermal conductivity and h the external heat transfer
coefficient.

As described in the following sections, a forced basic flow
caused by a horizontal pressure gradient is prescribed within
the horizontal porous layer. The forced base flow results in a
uniform basic velocity profile, with a seepage velocity of mag-
nitude ūB at an angle χ to the x-direction, and a purely vertical
heat flux.

2.1. Dimensionless formulation

Let us introduce dimensionless variables defined as

(x̄, ȳ, z̄) = (x, y, z)L, t̄ = t
σL2

α

(ū, v̄, w̄) = (u, v,w)
α

L
, T̄ = Tm + T

υα

Kcp

(8)

Then, the governing equations (2)–(6) can be written as

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (9)

∂v

∂x
− ∂u

∂y
= 2 GeT

∂T

∂x
(10)

∂v

∂z
− ∂w

∂y
= 2 GeT

∂T

∂z
(11)

∂u

∂z
− ∂w

∂x
= 0 (12)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= ∇2T + u2 + v2 + w2 (13)

where the modified Gebhart number is given by,

Ge =
(

gβ∗L
cp

)(
υα

Kcp

)
(14)

The boundary conditions (7) can be rewritten as

y = 0: v = 0 = ∂T

∂y

y = 1: v = 0 = ∂T

∂y
+ BiT (15)

where Bi = hL/k is the Biot number. The limit of a perfectly
isothermal upper boundary is attained by considering Bi → ∞.
2.2. Basic flow

Under these conditions there exists a uniform horizontal
seepage velocity uB = (uB, vB,wB) in the direction of the unit
vector s = (cosχ,0, sinχ) lying in the x, z-plane, and a purely
vertical heat flux. The basic state, which we shall analyse for
stability, is given by

uB = Pe cosχ, vB = 0

wB = Pe sinχ, TB = Pe2

2

(
2

Bi
+ 1 − y2

)
(16)

where Pe is the Péclet number defined by

Pe = (ūB · s)L
α

(17)

where ūB is the dimensional basic flow velocity.

2.3. Linearization

Perturbations of the basic state given by Eq. (16) are given
as

u = uB + U, v = vB + V

w = wB + W, T = TB + θ (18)

On substituting Eq. (18) in Eqs. (9)–(13) and neglecting nonlin-
ear terms in the perturbations, we obtain the linearized stability
equations,

∂U

∂x
+ ∂V

∂y
+ ∂W

∂z
= 0 (19)

∂V

∂x
− ∂U

∂y
= Ge Pe2(1 − y2)∂θ

∂x
(20)

∂V

∂z
− ∂W

∂y
= Ge Pe2(1 − y2)∂θ

∂z
(21)

∂U

∂z
− ∂W

∂x
= 0 (22)

∂θ

∂t
+ Pe cosχ

∂θ

∂x
+ Pe sinχ

∂θ

∂z
− Pe2 yV

= ∇2θ + 2 Pe cosχU + 2 Pe sinχW (23)

where Eq. (16) is used. The linearity of Eqs. (19)–(23) implies
that, due to the superposition property, one may treat rolls of
different orientations separately with regard to instability. An
advantage is that each of these cases can be dealt with using a
purely 2D treatment.

3. Roll solutions of the disturbance equations

Solutions of the disturbance equations (19)–(23) are sought
in the form of periodic rolls. Given that the angle χ is arbi-
trary, it is not restrictive to consider rolls with axes along the
z-direction by first setting,

U = U(x,y, t), V = V (x, y, t)

W = 0, θ = θ(x, y, t) (24)
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As a consequence, assuming χ = 0 implies the analysis of
transverse rolls (T-rolls) with axis orthogonal to the direction
of the basic flow. On the other hand, assuming χ = π/2 im-
plies the study of longitudinal rolls (L-rolls) with axis parallel
to the direction of the basic flow. Oblique rolls are such that
0 < χ < π/2.

Eqs. (21) and (22) are satisfied identically and, by defining a
stream function ψ ,

U = Pe−2 ∂ψ

∂y
, V = −Pe−2 ∂ψ

∂x
(25)

also Eq. (19) is fulfilled. Moreover, Eqs. (20) and (23) can be
rewritten in the form

∂2ψ

∂x2
+ ∂2ψ

∂y2
+ Ge Pe4(1 − y2)∂θ

∂x
= 0 (26)

∂θ

∂t
+ Pe cosχ

∂θ

∂x
+ y

∂ψ

∂x

= ∂2θ

∂x2
+ ∂2θ

∂y2
+ 2 Pe−1 cosχ

∂ψ

∂y
(27)

The corresponding boundary conditions are deduced from
Eqs. (15), (16), (18) and (25), namely

y = 0: ψ = 0 = ∂θ

∂y

y = 1: ψ = 0 = ∂θ

∂y
+ Bi θ (28)

Solutions of Eqs. (26)–(28) are sought in the form of plane
waves,

ψ(x, y, t) = Re
{
iΨ (y)eλt eiax

}
θ(x, y, t) = Re

{
Θ(y)eλt eiax

}
(29)

where the positive real constant a is the wave number, while
λ = λ1 + iλ2 is a complex exponential growth rate to be deter-
mined. We set λ1 = 0 in order to investigate neutral stability.
Moreover, for numerical convenience we shall also set,

γ = λ2 + a Pe cosχ (30)

By substituting Eq. (29) in Eqs. (26) and (27), we obtain

Ψ ′′ − a2Ψ + aR
(
1 − y2)Θ = 0 (31)

Θ ′′ − (
iγ + a2)Θ + 2iP −1Ψ ′ + ayΨ = 0 (32)

where primes denote differentiation with respect to y, and
where we have introduced the nondimensional parameters

R = Ge Pe4, P = Pe/ cosχ (33)

In Eq. (32), P is a modified Péclet number. In the present prob-
lem, there is not a prescribed temperature difference associated
with the boundary conditions so that, strictly speaking, one can-
not define a Rayleigh number. Nevertheless, since it multiplies
the buoyancy term, one can consider R as a Darcy–Rayleigh
number related to the characteristic temperature rise due to the
viscous heating phenomenon. For the sake of brevity, in the fol-
lowing, R will be called Rayleigh number.

The boundary conditions for Ψ and Θ are easily deduced
from Eqs. (28)–(29) to be
y = 0: Ψ = Θ ′ = 0

y = 1: Ψ = 0 = Θ ′ + BiΘ (34)

The present stability analysis is based on the ordinary differen-
tial equations (31)–(32), subject to boundary conditions (34).

Eqs. (29) and (30) imply that the perturbation wave travels
in the x-direction with a dimensionless phase velocity

cwave = Pe cosχ − γ

a
= −λ2

a
(35)

The homogeneity of Eqs. (31), (32) and (34) implies that Ψ and
Θ are defined only up to an arbitrary overall scale factor, which
means that we may set Ψ ′(0) = 1 as a normalization condi-
tion. These equations form an ordinary differential eigenvalue
problem with respect to R and γ , for any chosen wavenumber,
a, and modified Péclet number, P . Given the definition of R

in Eq. (33), this means that the critical Gebhart number may
be found in terms of the Péclet number. It is more satisfactory
from a physical point of view to obtain a critical Péclet number
as a function of the Gebhart number but, although one may plot
the variation of the Gebhart number with Péclet number, it turns
out that R remains of O(1) through the physically acceptable
range of values of Ge.

3.1. Series solution

Eqs. (31)–(32) subject to the boundary conditions (34) may
be solved by a power series method using

Ψ (y) =
∞∑

n=0

An

n! yn, Θ(y) =
∞∑

n=0

Bn

n! yn (36)

The three known (complex) initial conditions are

A0 = Ψ (0) = 0, A1 = Ψ ′(0) = 1, B1 = Θ ′(0) = 0
(37)

while B0 = Θ(0) ≡ η will need to be obtained by using the
boundary conditions at y = 1, Eq. (34). Higher order coeffi-
cients An and Bn may be determined by substituting expres-
sions (36) into Eqs. (31) and (32) and collecting like powers
of y. We thus obtain

A2 = −aRη, A3 = a2

B2 = (
iγ + a2)η − 2iP −1, B3 = 2iaRP −1η (38)

and the recursion relations

An+2 = a2An − aRBn + n(n − 1)aRBn−2

Bn+2 = (
iγ + a2)Bn − 2iP −1An+1 − naAn−1

n = 2,3,4, . . . (39)

The series solutions given by Eqs. (36) for the neutral stabil-
ity case has a rapid convergence. The real values of R and γ

and the complex value of B0 are obtained by ensuring that the
two complex boundary conditions at y = 1 are satisfied. In all
the following cases six digits of accuracy may be achieved by
truncating the sum to the first 32 terms.

We also used an alternative numerical procedure based on
function NDSolve of Mathematica (© Wolfram Research, Inc.).
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Details are given in the following section on the stability anal-
ysis.

3.2. Stability analysis

3.2.1. Longitudinal rolls
It is important to note that, when considering L-rolls (χ =

π/2), one has P −1 = 0. In these cases, Eq. (32) loses the RP −1

term, and one can see that the resulting eigenvalue problem ad-
mits real eigensolutions with γ = 0. Then, for L-rolls, Eq. (35)
implies cwave = 0. For each given wave number a, there exists
an eigenvalue R for neutral stability independent of Ge.

The data reported in Table 1 refer to neutral stability for
Bi → ∞, in the case P → ∞. The eigenvalues R are evaluated
analytically with the power series defined by Eqs. (36)–(39),
truncated to the first 32 terms, and numerically by employing
function NDSolve within Mathematica environment. As shown
in Table 1 there is an excellent agreement between the values of
R evaluated by these two procedures.

Table 1
Comparison between the series solution and the numerical solution for
Bi → ∞: neutral stability data in the case of L-rolls (χ = π/2 or G = 0)

a R

(series solution)
R

(numerical solution)

0.1 9960.858679 9960.858679
0.2 2527.028270 2527.028270
0.4 668.9622497 668.9622497
0.6 325.4935259 325.4935259
0.8 206.0065865 206.0065865
1.0 151.4954316 151.4954316
1.2 122.7225508 122.7225508
1.4 106.2413055 106.2413055
1.6 96.43282230 96.43282231
1.8 90.61094919 90.61094920
2.0 87.35928835 87.35928838
2.2 85.87285631 85.87285637
2.4 85.66617974 85.66617985
2.6 86.43199261 86.43199281
2.8 87.96785926 87.96785960
3.0 90.13581126 90.13581182
The neutral stability curve for L-rolls, based on Table 1, is
given in Fig. 1, which shows that it has the classical shape for
Bénard-like problems. In this case the critical Rayleigh number
and wave number are given by

Rcr = 85.6144, acr = 2.3362 (40)

Fig. 2 displays the neutral stability curves for L-rolls corre-
sponding to different values of Bi. The effect of the imperfect
isothermal boundary condition at the plane y = 1 is an in-
creased instability of the flow system. In fact, Fig. 2 clearly
shows that, for every wave number a, the eigenvalue R is an
increasing function of Bi.

3.2.2. Rolls with axes in arbitrary directions
In the general case it is suitable to introduce a parameter

G related to the Gebhart number, defined by G = Ge(cosχ)4,
such that, from Eq. (33),

R = GP 4 (41)

For physical reason it is convenient to use G as an ordering pa-
rameter instead of P . In fact, in judging the stability of flow
in the channel, first one has to fix the channel width and the
fluid properties, i.e. G. Then, one seeks the critical average ve-
locity of the fluid above which the flow becomes unstable. In
nondimensional terms, the latter step consists in evaluating the
critical value of P above which the flow is unstable. To sum-
marize, one has to fix G and then to find the critical value of P

or, equivalently, of R = GP 4. On account of Eq. (41), for a fi-
nite non-vanishing R, the limit P −1 → 0 coincides in fact with
the limit G → 0.

In the general case, the stability equations (31), (32) and (34)
include five parameters, R, P , Bi, γ and a, or equivalently R,
G, Bi, γ and a. For each given G, Bi and a there exist eigen-
values R and γ corresponding to neutral stability. For given G

and Bi, we obtain the critical Rayleigh number Rcr by minimiz-
ing R with respect to the wave number a. The corresponding
values for a and γ are written acr and γcr.

Table 2 shows the critical values of a, R, γ and P for dif-
ferent values of G, obtained by the numerical procedure based
Fig. 1. Neutral stability curve for L-rolls (G = 0) in the case Bi → ∞.
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Fig. 2. Neutral stability curves for L-rolls for different Bi.
on function NDSolve of Mathematica. The table indicates that
there is only a fairly weak variation in the critical values of R

and a for small values of G, approximately G < 10−8, which
corresponds to large values of P,P > 300. In this regime of
the parameters, the critical Rayleigh number for the onset of
convection is almost independent of the roll orientation χ . The
occurrence of a critical value of the Rayleigh number inde-
pendent of the Gebhart number is characteristic both of the
Horton–Rogers–Lapwood problem [12,13] and of Prats prob-
lem [14].

The condition G < 10−8 defines the regime of small G

where the critical values Rcr and acr are given with a fair ap-
proximation by Eq. (40), and one can consider approximately
γcr = 0. This regime includes almost all the realistic cases. In
fact, as specified in the textbook by Nield and Bejan [1], the
permeability K of a porous medium is such that 10−16 m2 <

K < 10−8 m2. Then, by employing the thermodynamic data of
water at atmospheric pressure reported in the textbook by Be-
jan [15] and by assuming L ∼ 1 m, one can easily obtain from
Eq. (14)

10−16 < Ge < 10−8 (42)

Being Ge proportional to L, one can correct the range defined
by Eq. (42) without difficulty, when L is higher or smaller than
1 m.

In the case Bi → ∞, it is easily seen from Table 2 that
rolls in the longitudinal direction, G = 0, have a higher critical
Rayleigh number than rolls in any other direction, which means
that L-rolls are the most stable. For transverse rolls (χ = 0), it
follows that G = Ge and P = Pe. From Table 2 it is then seen
that T-rolls are the most unstable, which implies that T-rolls are
preferred at the onset of convection. These results are valid for
all values of Bi as well.

Fig. 3 displays the respective variations of Rcr and acr with
G, while Fig. 4 displays the variations of Rcr and acr with P .
In these figures, the width of the small-G and large-P regime
is graphically well represented. Outside this regime, one sees
Table 2
Critical values of a, R, γ , P for different G and Bi → ∞
G acr Rcr γcr Pcr

0 2.3362 85.6144 0 ∞
10−12 2.3362 85.6144 0.0056357 3041.84
10−10 2.3362 85.6142 0.017822 961.914
10−8 2.3362 85.6121 0.056356 304.182
10−6 2.3359 85.5910 0.17818 96.1849
10−5 2.3353 85.5404 0.31671 54.0808
10−4 2.3332 85.3811 0.56240 30.3977
0.001 2.3267 84.8823 0.99566 17.0688
0.005 2.3153 83.9996 1.4770 11.3848
0.01 2.3071 83.3539 1.7461 9.55502
0.05 2.2749 80.7670 2.5477 6.33966
0.1 2.2533 78.9631 2.9762 5.30098
0.5 2.1797 72.3943 4.1503 3.46883
1 2.1382 68.3437 4.7089 2.87524
1.5 2.1119 65.6231 5.0402 2.57183
2.0 2.0927 63.5454 5.2745 2.37418
5.0 2.0301 56.2442 5.9975 1.83137
10.0 1.9840 50.2544 6.5019 1.49725

from Figs. 3 and 4 that Rcr decreases rapidly, revealing that the
flow is more likely to become unstable for very low values of
P , as it is shown in Fig. 4. However, it should be remembered
that instability for low values of P implies very large values of
G unlikely to be displayed by a real system.

The correspondence between G and P at critical conditions
is shown in Fig. 5. This figure reveals that, at critical conditions,
the relation P versus G is weakly influenced by Bi. An approx-
imate correlation linking G and P at critical conditions can be
expressed as

P = 2.90358G−0.253465 for Bi > 10 and 10−6 � G � 1 (43)

As it is shown in Fig. 3, for G approximately lower than
10−4, Rcr practically becomes independent of G so that, for ev-
ery Bi, one can determine an approximate correlation linking G
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Fig. 3. Critical values of R and a versus G, for different Bi.

Fig. 4. Critical values of R and a versus P , for different Bi.
and P at critical conditions by employing Eq. (41) and setting,
for every Bi,

R = lim
G→0

Rcr (44)

The value of Rcr in the limit G → 0, that corresponds to in-
stability for L-rolls, depends on Bi. The relation Rcr versus Bi
in the limiting case G → 0 is represented in Fig. 6. This figure
shows that Rcr varies within the interval 36 < Rcr < 85.6144.
The value Rcr = 36 is attained for Bi → 0, i.e. for the limit of
upper adiabatic wall. The right frame of Fig. 6 shows that, for
Bi → 0, one has acr = 0, i.e. the neutral stability curve has a
monotonic increasing behavior.

Figs. 7 and 8 display streamlines and isotherms at critical
conditions corresponding to the limit G → 0 in two rather dif-
ferent cases, namely Bi → ∞ (Fig. 7) and Bi = 0.1 (Fig. 8). The
numerical values on the x-axis are not reported as the width of



662 L. Storesletten, A. Barletta / International Journal of Thermal Sciences 48 (2009) 655–664
Fig. 5. P versus G relation at critical conditions, for different Bi.

Fig. 6. Critical values of R and a versus Bi, for L-rolls (G → 0).
the convection cell is determined by the critical wave number
acr and, as such, changes with Bi. Moreover, only differences
between values of x are physically meaningful as the solution
of the disturbance equations can be arbitrarily translated along
the x-axis. The most apparent difference between Figs. 7 and 8
is the shape of the isotherms describing a condition of perfectly
isothermal top boundary in Fig. 7, and a condition of weak heat
transfer at the top boundary in Fig. 8.

3.3. Comparison with the case of a linear equation of state

The comparison between the results obtained here with cold
water and the results obtained in Ref. [3] with water in normal
conditions, i.e. assuming a linear equation of state, is possible
from a qualitative perspective. In fact, the set of dimensionless
parameters involved in the analysis of the same problem in the
case of a linear equation of state [3] includes the usual Gebhart
number

Ge = gβL

cp

(45)

where β is the usual thermal expansion coefficient.
On the other hand, in the present paper, the Gebhart number

is in fact a modified Gebhart number given by Eq. (14), namely

Ge =
(

gβ∗L)(
υα

)
(46)
cp Kcp
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Fig. 7. Streamlines (left) and isotherms (right) corresponding to critical conditions for L-rolls (G → 0) with Bi → ∞.

Fig. 8. Streamlines (left) and isotherms (right) corresponding to critical conditions for L-rolls (G → 0) with Bi = 0.1.
Moreover, the driving parameter for the onset of instabilities is,
in the case of water in normal conditions [3],

R = Ge Pe2 (47)

while, in the present case of cold water, it is, on account of
Eq. (33),

R = Ge Pe4 (48)

The definition of Péclet number is the same in both cases, but
the Gebhart number is defined differently. This leads to the
main important difference between the critical conditions for
the onset of convection with water in normal conditions and
with cold water. In the former case, the onset of convection
occurs independently of the values of permeability and fluid
viscosity. In the latter case, the critical conditions for the onset
of convection depend on the values of permeability and fluid
viscosity.

4. Conclusions

We have considered mixed convection of cold water in a hor-
izontal porous layer where viscous dissipation serves to raise
the temperature of the moving fluid. The lower boundary of the
layer is assumed to be adiabatic, while the upper boundary is
subject to a 3rd kind thermal boundary condition representing
heat transfer versus an external environment with temperature
Tm, that corresponds to the maximum density of the cold wa-
ter. The fluid density varies with temperature according to a
quadratic relationship. Our aim has been to determine criteria
for the onset of convection. In particular we have investigated
how the instability depends on viscous heating, cold water prop-
erties and the 3rd kind boundary conditions.

In the present problem, there is no prescribed temperature
difference associated with the boundary conditions so that one
cannot, strictly speaking, define a Rayleigh number. Neverthe-
less, since it multiplies the buoyancy term, one can consider
R = Ge Pe4, where Ge is the Gebhart number and Pe the Péclet
number, as a Darcy–Rayleigh number related to the character-
istic temperature rise due to the viscous heating phenomenon.

Solutions of the disturbance equations are sought in the form
of periodic rolls. For all Biot numbers Bi, transverse rolls turn
out to be the most unstable, which implies that such rolls are
preferred at onset of convection. We have found that the critical
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value Rcr for neutral stability is approximately independent of
the Gebhart number Ge in a regime including almost all physi-
cally realistic cases. In the limit of a perfectly isothermal upper
boundary, Bi → ∞, the critical values Rcr and acr are given
with a fair approximation by Eq. (40) in this regime. The neu-
tral stability curves for finite Biot numbers, given in Figs. 3
and 4, show that the critical values of both R and a reduce as
Bi decreases. In the adiabatic case, Bi → 0, we obtain acr = 0,
which is consistent with the similar case for the Darcy–Bénard
problem.

The relation Rcr versus Bi in the limiting case G → 0 has
been represented. It has been shown that Rcr varies within the
interval 36 < Rcr < 85.6144, where Rcr = 36 is attained for
Bi → 0.
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